
Understanding Design Patterns
with Design Rationale Graphs

Elisa Baniassad and Gail C. Murphy
Department of Computer Science

University of British Columbia
2366 Main Mall Vancouver BC Canada V6T 1Z4

{bani, murphy}@cs.ubc.ca

Christa Schwanninger
Siemens AG, CTSE 2

Otto-Hahn-Ring 6, 81739
Munich Germany

christa.schwanninger@mchp.siemens.de

ABSTRACT
A Design Pattern presents a proven solution to a common design
problem using a combination of informal text, diagrams, and
examples. Often, to suitably describe an issue, the author of a
Design Pattern must spread and repeat information throughout
the Pattern description. Unfortunately, spreading the information
can make it difficult for a reader to grasp subtleties in the design,
leading to possible misuses of the Pattern.

In this paper, we introduce the Design Rationale Graph (DRG)
representation that connects and visualizes related concepts
described in a Design Pattern. The localization of concept
information is intended to help improve a reader’s understanding
of a Design Pattern. Improved comprehension of a Pattern could
aid the use of a Pattern during implementation, and the reading
of code built upon the Pattern. In addition to describing the DRG
representation, we present a tool we have built to support the
semi-automatic creation of a DRG from Design Pattern text, and
we report on a small study conducted to explore the utility of
DRGs. The study showed that readers with access to a DRG
were able to answer questions about the Pattern more completely
and with more confidence than those given the Design Pattern
alone.

Keywords
Design patterns, Design rationale, Design comprehension,
Program understanding

1. INTRODUCTION
What is so exciting about [design] patterns? It is
probably the fact that they constitute a ‘grass roots’
effort to build on the collective experience of skilled
designers and software engineers. Such experts already
have solutions to many recurring design problems.
Patterns capture these proven solutions in an easily-
available and, hopefully, well-written form.[3]

Authors of Design Patterns face a difficult task: they must try to
convey complex problems and solutions in a comprehensible way
to readers of the Pattern. To achieve this task, Design Pattern
authors use a mixture of informal text, diagrams and examples.
Text is used to describe the context of the design problem, the
solution, and the forces impinging upon a solution, amongst other
issues. Diagrams are used primarily to convey the structure and
dynamics of the presented solution. Typically, a Design Pattern
will be reviewed and revised several times to help ensure the
desired information is being conveyed.

Readers of a Design Pattern, who are most often software
developers, also face a difficult task. To use the Pattern
appropriately, or to understand the use of the Pattern, a developer
needs a thorough understanding of when the design applies, how
it works, and why it works. In a Pattern, much of this information
is typically presented through the informal text. Text is used
because it provides the needed expressiveness. However, the use
of text comes at a price: readers can find it difficult to grasp
subtleties of the design because information pertinent to an issue
is spread throughout the Pattern text. Even for small Patterns,
this spreading of information can be problematic. For example,
in an exploratory study we conducted, (Section 4), we found that
software developers who believed they understood the 14-page
Visitor Pattern [7] were unable to correctly answer a question
about the basic operation of the Pattern.

To help Pattern readers, we have created the Design Rationale
Graph (DRG) representation, which supplements the original
Design Pattern. A DRG aggregates, organizes, and visualizes
information in the Design Pattern according to design elements.
Design elements are any concept or entity described in the
Design Pattern text. A reader can query a DRG to find all design
elements related to a particular concept and can view those
elements in context. The identification and viewing of detailed
design information in context facilitates a developer’s
understanding of how the design described in the Pattern works.
In particular, a DRG can help a reader understand the
rationalethe whybehind choices made in the design
presented by the Pattern.

We begin with a brief example of a DRG created from the
Visitor Pattern and a description of how the DRG has helped
developers improve their understanding of the Pattern
(Section 2). Then, we provide a more detailed description of the
DRG representation, the operations available to help a developer
navigate around a DRG, and the semi-automatic tool we have
developed to create DRGs from Pattern text (Section 3). Next,
we describe an exploratory study we conducted to determine if

the DRG representation and tool shows promise in helping
increase the design detail and context reported by developers
when investigating questions about a Pattern: this study involved
software developers from both academia and industry and
considered two patterns, Visitor and Reactor [14] (Section 4).
We conclude with a discussion of outstanding issues (Section 5),
related work (Section 6) and a summary of the paper (Section 7).

2. EXAMPLE: A DRG OF VISITOR
To illustrate a DRG in action, we show how the tool can be
applied to help understand the Visitor Pattern.

The Visitor Pattern supports the selection of a method to execute
based on both the type of the initial recipient of a message and
on the type of the sender of that messagethe caller. In other
words, the Visitor Pattern provides support for double
dispatching. A user of the Visitor Pattern must understand that
double dispatching is at the core of the Pattern to apply the
Pattern correctly and to reap its benefits. Surprisingly, when we
asked two pattern-aware developers to read Visitor and answer a
few questions, they were unable to answer completely a question
about how the method to execute is chosen. One developer
responded that the method was chosen based only on the type of
the caller; the other responded that the method was chosen based
only on the type of the message recipient.

In contrast, developers who had access to the DRG
representation and tool were able to answer the question
correctly. Figure 1 shows the portion of the DRG used by the
developers. This DRG localizes information about the method
determination that was spread throughout the Pattern text. The
rectangles in the DRG represent design elements and nouns
found in the pattern, the oval nodes represent verbs, and the
edges are labelled with phrases linking the nouns and verbs. The
subject of a verb points into the verb; the object of the verb is
pointed to by the verb. Diamond-shaped nodes indicate a
sequence of events.

Reading this DRG, a developer can determine several pertinent
facts: the accept operation calls the visit operation as the
second in a sequence of three calls; the accept operation is a

double dispatch operation because its meaning depends on both
the type of the visitor and the type of the concrete
element; the visit operation that is called depends on the
type of the visitor and the type of the concrete
element; and double dispatch is the key to the Visitor Pattern.

The full DRG representation of the 14-page Visitor Pattern is
large, comprising over 250 nodes and 400 edges. Examining the
entire DRG to help understand the Pattern is thus impossible.
Instead, developers use a set of operations to select relevant
portions of the DRG. For example, the DRG in Figure 1 was
produced by including the paths that contained the word
“depend”, and then expanding on the relationship between the
accept operation and the visit operation. A developer might
choose to search for the word “depend” because they recall from,
or see in, the pattern text that the execution depended on a
number of factors. After viewing the graph produced by this first
query, the developer may chose to expand the graph to include
invocation information between the accept and visit
operations. This pair of queries collects information about
double dispatch and puts the information in the context of the
calling structure explained in the pattern.

3. DESIGN RATIONALE GRAPHS
Design Rationale Graphs are intended to help developers
understand informal design text, such as that found in Design
Patterns, by semi-automatically structuring, amalgamating and
graphically displaying the text. In this section, we describe how
to create, read and manipulate a DRG.

3.1 Creating a DRG
Creating a DRG for a Design Pattern requires two inputs: the
text comprising the Pattern, and a dictionary of design elements
specific to the Pattern. We define a design element as an entity,
participant, or concept. Some examples of design elements are
names used in the implementation, such as method names or
class names; other examples are concepts described in the
Pattern, such as double dispatch.

Figure 1: A DRG about double dispatching in the Visitor Pattern

Providing the Pattern text is easy as it can be extracted from a
digital representation of the Pattern. This extracted text requires
one step of pre-processing by the DRG user before it can be input
to the DRG tool: the user must annotate the text to include
sequential information. The annotation involves adding the word
“First” to the beginning of the first sentence in a set of steps, and
the word “then” to the beginning of each subsequent sentence.
Although this might appear onerous, it took less than 10 minutes
to annotate the text of the Visitor Pattern.

Providing the dictionary of design elements is somewhat more
involved. To help the user with this step, our tool presents the
user with a list of nouns found in the Pattern text. The user then
peruses the list and selects the design elements. The choice of
design elements dictates the structure of the DRG: a noun
designated as a design element is represented by one node in the
graph whereas separate nodes are used to represent occurrences
of non-design element nouns. Among the noun phrases selected
as design elements for the Visitor DRG were “double dispatch”,
“visitor”, “accept operation”, and “concrete element. Nouns not
chosen as design elements included “key”, “meaning”, “class”,
and “call”. For the Visitor Pattern, it took about five minutes to
choose the 17 design elements for the dictionary from the 93
nouns in the Pattern text. Since the process of creating a DRG is
not onerous, if a user reading a DRG finds a concept not captured
as a design element, the user may iteratively update the
dictionary and recreate the DRG.

To create a DRG from the Pattern text and the dictionary, our
tool uses a parts-of-speech tagger, called LTCHUNK [11] to
identify the noun and verb phrases in Pattern text sentences.
Running LTCHUNK on a sentence from the Visitor Pattern
results in the following mark-up: noun phrases are enclosed in
double square brackets and verbs are enclosed in double
parentheses.1

Paragraph 2, page 339: [[double_dispatch]] ((is)) the
[[key]] to the [[visitor_pattern]] because [[the operation_]]
((executed)) ((depends)) on the type of the [[visitor_]] and
the type of the [[concrete_element]].

Our tool processes sentences one at a time. For each sentence,
the tool must determine the nodes and edges to be introduced
into the DRG. Noun phrases are mapped to nodes as described
above. Each occurrence of a verb phrase introduces a new node
into the graph. Edges are determined as follows. The first graph
node identified in a sentence is considered a source node,
regardless of whether it is a node based on a verb or a noun
phrase. Each subsequent node encountered in the same sentence
is considered as a destination node and an edge is introduced into
the graph between the source and destination node. When a node
based on a verb phrase is encountered, the source node is reset to
the verb node. The edges identified in this way are labelled by
the phrase, if any, linking the noun and verb phrases.

Thus, in the sentence from Paragraph 2, page 339 stated above,
“double_dispatch” is created as a node in the graph and is
considered a source node. Since the next phrase, “is” is a verb
phrase, a new node is introduced into the graph, an edge is
created between “double_dispatch” and “is”, and the source node

1 Underscores were introduced during dictionary pre-processing.

is reset to be the “is” node. When the next phrase is encountered,
“key”, a node is introduced for the phrase, and an edge is created
from “is” to “key” with label “the”. The fragment of the DRG
created from this sentence can be seen in Figure 1. The
remaining sentences used to create Figure 1 are shown below.

1. End of page 338: Double dispatch means the operation
that gets executed depends on the kind of visit request
and the types of two receivers.

2. End of page 338: The accept operation is double
dispatch because its meaning depends on both the type
of the visitor and the type of the concrete element.

3. Middle of page 337: The visit operation that ends up
getting called depends on both the type of the concrete
element and the type of the visitor.

Our tool outputs the DRG in the AT&T graphviz format [1]. The
graphviz (dotty) package can then be used to view the DRG.

3.2 Reading a DRG
A DRG preserves all the text from the original Design Pattern.
Sentences from the Pattern are shown as chains of verb phrases
with the subjects and objects attached to the chain. The first
verb in a sentence has no incoming edges from verb nodes, and
the final verb node in a sentence will have no outgoing edges to
verb nodes.

Regardless of their position in the chain, verb nodes will have an
incoming edge from their subject, and an outgoing edge to their
object. Hence, to find the subject of a verb, a user follows the
edge incoming to the verb node backwards to a noun or design
element. To find objects of a verb, a user follows the outgoing
edges. For example, in Figure 1, the accept operation points to
a calls verb, hence it is the subject of the verb. The same
calls node points to the visit operation, which is the object
of that verb.

For the sake of maintaining contextual information, it may be
necessary for a user to understand the ordering of sentences from
the Pattern text. For instance, adjacent sentences may describe a
sequence of calls between methods. Ordering is shown through
sequences, diamond-shaped nodes, in the DRG. In a sequence,
the first verb is pointed to by the FIRST node, the second is
pointed to by the node labelled 2, and so on. For example, in
Figure 1, the FIRST node points to an unexpanded calls verb.
The 2 node is read next, and points to another calls verb that
links the accept operation to the visit operation. A third
calls verb follows, which is also unexpanded.

For increased clarity, the DRGs are shown in colour when
presented on screen. Noun nodes are shown as blue, verb nodes
as purple, and nodes related to adjectives are shown as pale
yellow. Each new sequence has its own colour, and all sequence
nodes in a particular sequence share that colour. This helps
readers identify verbs that are parts of the same sequence even
when the entire sequence is not shown.

3.3 Manipulating a DRG
Because even small Patterns produce large graphs, a user needs
support in manipulating a DRG to produce a useful view. To
help the user generate views pertinent to a concept of interest,
our tool has operations to expand or subtract portions of the

graph related to nodes specified by one or more regular
expressions. The expansion or subtraction can be with relation to
the entire graph or with relation to a sub-graph.

For example, the user who expanded the DRG for the Visitor
Pattern based on the accept and visit operations would have
asked for an expansion based on the regular expressions
visit.*, accept.* and impl.* to get all related
implementation nodes to the operations of interest.

The DRG manipulation operations are currently supported by a
set of command-line tools. A graphical interface to make these
operations easier to apply is planned, but has not yet been
implemented.

4. EXPLORATORY STUDY
To determine whether the DRG representation can help readers
who are trying to understand a Design Pattern, we conducted a
small, exploratory study. The hypothesis of this study was that
the use of a DRG would increase the amount of design detail and
context reported by Design Pattern readers.

4.1 Study Format
We broke the study into two blocks, each of which consisted of
four, single participant trials. In each block, half of the
participants, the test group, had access to a DRG of the Design
Pattern; the other half, the control group, worked only from the
Pattern. All participants were asked questions about the Design
Pattern. We compared the responses of the control group to the
test group within each block. We then compared the results
between the blocks.

The participants in the first block were software developers from
Siemens AG. These participants worked with the 22-page
Reactor Pattern [14].2 The second block involved four graduate
students from the University of British Columbia (UBC). These
participants worked with the Visitor Pattern.

4.1.1 Patterns Used
We used two different Patterns to help reduce the likelihood that
a problem in understanding the Pattern was related to the way in
which the Pattern was written, or to the questions we asked. The
two Patterns we used have different authors and are of differing
size: the Visitor Pattern is short but subtle; the Reactor Pattern is
longer and more detailed.

4.1.2 Participants
We kept the skill set of participants within each block as similar
as possible. All of the participants in the Reactor experiment
were non-native English speakers, with similar experience in
reading and writing English. Each participant possessed the
equivalent of a Bachelor’s degree in Computer Science, and had
at least one year of experience working with Java in an industrial
setting. Each participant was screened to have a certain level of
exposure to Design Patterns, but no exposure to the Reactor
Pattern.

2 The Reactor architectural pattern allows event-driven

applications to handle service requests sent to applications by
one or more clients.

The participants in the Visitor Pattern experiment were all PhD
students at the University of British Columbia. None of the
participants had previous exposure to Design Patterns. Each
participant was a native English speaker.

4.1.3 Experimental Set-up
In each trial, a participant was given the same set amount of time
to read a hard-copy of the assigned Design Pattern. At Siemens,
the participants were given one hour to read the Reactor pattern:
At UBC the participants were given 20 minutes to read the
Visitor pattern.

After reading the pattern, participants in DRG trials were asked
to put away their copy of the Pattern. They were then given a 20-
minute tutorial on reading a DRG. After this tutorial, they were
asked a predetermined list of questions about the Pattern. They
were not allowed to refer to the hard-copy of the Pattern while
answering the questions. They were allowed to iteratively ask the
experimenter to perform an operation on the presented DRG of
the Pattern and were able to view the DRG resulting from the
operation. We chose the approach of the experimenter
performing the DRG query because of usability concerns about
the current DRG tool interface.

Participants in the control group were asked the same
predetermined questions about the Pattern. In contrast to the
DRG trials, these participants were allowed to refer to their copy
of the Pattern, and any notes they had taken while reading the
pattern.

Participants in trials involving the Visitor Pattern were asked to
answer, as fully as possible, three questions:

1. What allows the Visitor to directly access the concrete
element?

2. How is it determined which operation is executed?

3. What is the sequence of events that occur in the Visitor
Pattern?

For the Reactor study at Siemens, the experimenter was not on-
site. Instead, the experimenter interacted with the participants
over the phone and over the web. These participants were asked
a different set of three questions:

1. What does the logging handler register with, and what
does it register for?

2. About what does the synchronous event demultiplexer
notify the initiation dispatcher?

3. What happens after a connection request arrives?

It was reasonable to expect that both the control trial and the
DRG trial participants could answer these questions for two
reasons. First, the questions we asked of the participants about
the Pattern could be answered based solely on the information in
the text of the Pattern. Second, both the control and the DRG
trial participants were given ample time to read the Pattern, and
participants in the control group were allowed to re-read the
Pattern as much as they wanted within the allotted time. The
control trial participants were thus not at a disadvantage
compared to the DRG trial participants.

4.1.4 Evaluation Questions
After the participants had responded to the Pattern-specific
questions, they were asked follow-up questions.

Participants in the control trials were asked about their
confidence in their answers to the Pattern questions, how they
used the Pattern text to reach their answers, and from where they
drew their answers in the Pattern text.

Participants in DRG trials were asked four questions.

1. Did the graphs help you visualize design entities?

2. Did the graphs help you visualize relationships
between entities?

3. Did the graphs help you feel more confident about your
answers?

4. Would you choose to use this tool again?

4.1.5 Study Limitations
The format of the study has several drawbacks, including the
small number of participants, the small number of Patterns, and
the lack of a group who had both the Pattern text and a DRG

available.

The small number of users and Design Patterns in our study
affects the generalizability of our results. We chose to limit the
number of users and Patterns because we were focusing on an
initial determination of whether the DRG representation showed
promise. We believe our results can answer this question because
we varied the background of the participants, including both
experienced software engineers and graduate students, and
because we selected Patterns that differed in authorship, style,
and length.

In our study, we chose to have the test group use only the DRG
rather than both the text of the Pattern and the DRG because we
wanted to isolate the use and effectiveness of the DRG. At this
exploratory stage, we did not want to give the participants a
choice about the degree to which they relied on the DRG to
answer their questions.

4.2 Study Results
The results of our study supported our hypothesis: DRG
participants gave more complete and detailed responses than
control participants. Our analysis of the results also provided two

Figure 2: DRG for Reactor Experiment Question 3.

Gray nodes show the pattern portions considered by both control and DRG participants.

unexpected results: DRG participants tended to take more time
answering the questions, and they reported more confidence
about their responses.

4.2.1 Detail and Completeness of responses
For both Patterns, we observed that the DRG participants
provided highly detailed and precise answers. In contrast, control
participants using the original form of the Pattern typically
responded with higher-level conceptual information. This
observation particularly held for information that could be
considered “obscure”.

The first question in the Reactor trials, for instance, dealt with a
specific example from the Pattern. The control trial participants
tended to answer about the general case, rather than about the
situation described specifically in the example. Although their
answers demonstrated that they understood the relevant concept,
they missed stating the precise type of events registered for by
the logging handler used in the example, the type of event
handler it registered, and details about the entity with which it
registered. The DRG participants did not miss any of these
details.

In the third question of the Reactor trials, the participants were
asked to explain what happens after a connection request arrives.
To help them answer the question, the DRG trial participants
asked to see a graph relating specifically to the arrival of
connection requests. The graph shown in Figure 2 was created
by querying for arrival in the context of connection requests, and
then by expanding the sequences in which the arrival nodes
appeared.

The answers given by the DRG trial participants were more
complete and more detailed than those given by the control trial
participants. Figure 2 depicts the difference in the answers of
the two groups. The graph shows the details expressed by the
DRG participants. The details given by either of the control trial
participants are coloured gray. The colouring of nodes shows
that the control participants missed many design details. Among
them, the passive establishment of a sock_stream object,
and the invocation of the synchronously demultiplexing select
call.

4.2.2 Willingness to Explore
The DRG participants spent more time answering the questions
than the control participants, who all took less than five minutes
to answer each of the questions.

When we asked the control participants why they did not take
more time to re-read the Pattern to provide detail, two of the
control participants said they did not know it was required,
implying that they would not voluntarily do so, and the other two
explicitly said they did not feel they would get anything more out
of “flipping through” the text.

For example, participant A, in the Visitor control trials,
responded incorrectly to Question 1. When asked why he did not
look in more detail for the relevant parts of the Pattern, one
Visitor participant said:

[it] seemed familiar, but I didn’t think I could
flip back and find it. I did kind of hesitate
with the text going ‘do I remember at all
where that was, or am I going to have to re-

read the whole thing?’, and then decided I
had a pretty good idea where [it] appeared.

In contrast, the DRG participants spent approximately half an
hour answering each question. At some point, each of these
participants noted that they believed they had collected all
necessary information, but wished to continue exploring “just to
be sure”. When asked why, one participant responded:

Well ... it’s that [with a DRG] I can start by
looking in at a place where I believe is a
starting point where I want to begin, and then
I can go a little bit out from there, and I can
go a little bit down a path and kind of go "no
that’s not working out" and quite quickly go
another way.

Whereas maybe in the text, it's more like,
maybe I'll start a paragraph and I won't know
where its going, and I'll think "I can cut that",
but I feel like maybe I've wasted a lot of time,
and I SHOULD have read that paragraph.
And I feel like [a DRG] helps me very quickly
zoom in on the relationships.

Another indication of the willingness to explore was the
inclination of the participants to modify their original answers
based on new information gathered either from the text or from
the DRG. All control participants were asked to look through the
Pattern and report the source of their answers. They all used this
perusal to support their original answers, even when those
answers were incorrect as happened with two Visitor
participants.

Both during their exploration of the DRG and upon later
reflection, the DRG participants all noted that they had
incompletely, or incorrectly answered the questions before they
began exploration, and that they were able to improve their
answers through the use of the DRGs.

4.2.3 Level of confidence in answers
Although all control trial participants reported that they could not
be fully confident about the completeness of their answers, they
were confident about the correctness of their answers. Only one
Reactor control participant admitted little confidence about the
correctness of all his answers. The two Visitor control
participants expressed complete confidence in their answers to
questions two and three, but less confidence about question one,
although they both strongly believed that they were partially
correct. The other Reactor control participant felt confident
about all his answers. Too see if they were correct in their levels
of confidence, we examined their answers.

As mentioned before, the Reactor control participants both
answered all the questions mostly correctly, while missing
details of the answer.

The control participants in the Visitor experiment both rightly
lacked confidence on question one, which they both answered
incorrectly. For Question two, about which they were both
highly confident, they answered incompletely, forgetting that it is
both the type of the visitor and the type of the concrete element
that determine which visit operation is eventually called. One
said that it was only the type of the visitor, the other said only the

type of the concrete element. In question three, only one
participant was able to give details about the invocation of the
visit and accept operations; neither recalled how the accept
operation was called (even though one was working from the
interaction diagram shown in the text, page 335, [7]).

The DRG participants all stated that the graphs helped them
collect the relevant information together, so they could answer
the questions more completely and with more detail. They all
noted that they felt more confident answering the questions using
the graphs, than they did answering from memory before using
the graphs. Three of the four DRG participants noted that if they
were able to refer both to the text and to the graph, they would
feel most confident about their answers.

4.3 Summary of Results
We found the results of the study encouraging from three
perspectives: DRG readability, support for detailed
understanding of design concepts, and support for linking design
context to design elements.

After a 20-minute tutorial, all participants in the DRG trials were

able to read the graphs with relative ease, and were able to
collect the information displayed in the graphs to fully answer
the questions posed.

The DRG participants answered the questions in a more detailed
way than those using the Pattern because the DRG participants
examined portions of a relevant DRG sub-graph containing the
details before answering. The control participants, in contrast,
referred specifically to only one portion of the text per question,
and even then, they did not delve deeply enough in the text to
draw out all relevant details.

Finally, the DRG participants noted design concepts that
provided context for the design elements involved in answering
the questions. For instance, in the Reactor trials, only the DRG
participants noted information about how a process blocks while
awaiting arrival of events. This information helps ensure the
concept of the responsiveness of servers to clients. In the case of
Visitor, only the participants in the DRG trials connected the
double dispatch concept to how the method to be executed is
determined. In each of the DRG trials, the participant noted the
relevant concept information only after seeing it connected to

Figure 3: How the synchronous event demultiplexer contributes to server responsiveness

parts of the graph being viewed.

5. DISCUSSION
To date, our focus has been on the utility of the DRG concept and
the feasibility of creating DRGs from Design Pattern text. Given
the early stage of this research, there are a number of outstanding
issues related to using, creating, and representing DRGs. We
discuss several issues in each of these categories.

5.1 Tracing Rationale
A primary motivating factor behind the development of DRGs is
the desire to help software developers understand the why behind
the source code in a system. All too often, a software developer
who is faced with making a change to an existing system must
guess why the source code has been implemented in a particular
way. An incorrect guess about the design rationale behind a piece
of code can lead to the violation of properties of the system, such
as the particular structuring chosen to ease future changes, the
performance of the system, or even the intended behaviour.

The use of Design Patterns to implement systems can help make
the rationale of a design decision more apparent. A developer
who recognizes the use of a Pattern can read the Pattern to more
fully understand the design problem and solution. However, as
we have noted in this paper, it can be hard for a reader of a
Pattern to link together all relevant rationale information with
particular pieces of the solution.

Although we have focused on examples in this paper primarily
dealing with how a solution described in a Pattern works, we
believe DRGs can also be helpful in linking the information
contained in the Pattern with pieces of the solution. For example,
Figure 3 shows the result of two queries that combine to describe
how, through its process blocking conventions, the Synchronous
Event Demultiplexer design entity contributes to server
responsiveness. The nodes shown in gray in Figure 3 are
highlighted to show nodes of special interest. The dark edges
show how low-level implementation details correspond to server
responsiveness.

5.2 Establishing Relationships
There are two limitations to our current DRG creation algorithm:
pronouns and synonyms. Currently, pronouns and synonyms in
the input text must be massaged to enable the formation of an
appropriate DRG.

The problem with pronouns is that they are interpreted as new
noun nodes, and are thus inserted into the graph, without
adequate linkage to the concept or entity to which they refer.
This problem can be overcome by replacing the pronouns with
appropriate concrete nouns. Typically, this massaging is
necessary only for pronouns that appear at the beginning of
sentences. If a pronoun appears in the middle of the sentence, it
typically refers to a noun within the sentence. Since most
queries do not break sentences up when returning portions of
interest in the graph, these pronouns will be attached to the
concept or entity to which they refer.

Along the same lines, there is no automatic support for
synonyms. Currently, to assure that all synonyms of a noun or
concept are linked it is necessary to replace all mentions with

one common label. This ensures that all the related paths will
converge into one node.

More sophisticated text analysis support and the input of a
synonym dictionary could help address these problems.

5.3 Complementary Design Documentation
A DRG does not add or infer any information that was not
present in the design documentation from which it was created.
A DRG simply provides a different view of the information. A
DRG is thus meant to complement, not replace, the existing
documentation.

In particular, a DRG does not retain the ordering of sentences in
the design documentation. As a result, it is difficult to read large
bodies of text from a DRG. A DRG allows specific concepts and
entities to be explored while the documentation explains the
“story” of the design.

Figure 4: Gray nodes show duplication

5.4 Improving the DRG Representation
Observing the participants in the DRG trials, we learned of three
areas needing improvement in the DRG representation:
sequences, examples, and repeated concepts.

5.4.1 Sequence interpretation
Three of the DRG participants had trouble correctly interpreting
the sequence information. The main problem was that sequence
nodes point to the first verb in a sentence, but not all the
subsequent verb nodes in that same sentence. The reader is
supposed to read the entire sentence pointed to by the FIRST
node before reading the sentence attached to the 2 node. For
instance, in Figure 4, the second step in the upper-most sequence
is not merely that the accept operation calls the visit
operation, but that it calls the visit operation that belongs to

the visitor, and passes the concrete element as an
argument.

As a remedy, the participants suggested that the diamond shaped
nodes should be eliminated and instead, special edges should be
used to link each verb together. One drawback of this approach is
that it would be difficult to indicate unexpanded sequence
information. For example, in the lower-left corner of Figure 4,
the user has not expanded the verb attached to the 2 node.

5.4.2 Showing the context of examples
Currently in a DRG, all information from the Pattern text is
represented in the same way, regardless of where it appears in
the text. This approach allows the user to focus on all
information relevant to a topic or entity. Although useful for most
text, this approach can be problematic for text associated with
examples of design entities.

At the beginning of the Visitor Pattern, there is an example of a
type checking system. The information that the type checking
nodes are related to an example is preserved and can be queried
in the DRG. However, the information that the nodes are related
to an example is not guaranteed to be visible whenever the type
checking nodes are visible. A user looking at information only
about the example may miss the larger context and this may
cause the user to assume that details about the type checking
system are part of the general Visitor solution, when in fact they
are specific to the example implementation.

One way to address this problem would be to show the nodes
that stem from an example node differently, for instance, in a
different colour. This visual cue would allow the DRG user to
understand immediately which nodes were associated with
examples; the user could then perform further queries to draw in
any larger design context desired.

5.4.3 Summarization and merging of information
Often, in Pattern text, the same concepts are repeated, almost
detail for detail. Translated into a DRG, this repetition is
represented as repeated edges and nodes. For example, in
Figure 1, the central concept of the Visitor Patternthe double
dispatchingis expressed at least three times in different places
because the fact that one method calls another is mentioned
several times, in different contexts, in the text.

When information appears more than once, users of the DRG
sometimes assume that the nodes refer to different concepts. For
example, the participants in the DRG trials, when seeing two
references to the accept operation calling the visit operation
(Figure 4), assumed that the two nodes referred to different calls,
when, in fact, they refer to the same call. The DRG
representation may be easier to read if equivalent nodes were
merged into one, or if they were explicitly grouped together into
a visual box.

6. RELATED WORK
Various approaches have been proposed to help developers use
and understand Design Patterns. In this section, we discuss how
this work relates to the DRG approach. We also discuss how
DRGs compare to the use of hypertext to explore software
documentation and compare the DRG representation to the
conceptual graph representation.

Pattern mining techniques help a developer search for and
recognize Design Patterns used in the source code comprising a
system. For instance, the Pat system presented by Prechelt and
colleagues [19] uses Prolog and a commercial CASE tool to
locate instances of structural Design Patterns in source code.
The SPOOL [9] system combines various source code capturing
tools, including SniFF [16] and Gen++ [5], with pattern detection
mechanisms to form a database that can be queried to report on
structural features of the code base. The program visualization
tool Program Explorer tool presented by Nakamura et al [10]
uses a Prolog fact base that contains both static and dynamic
information to help filter and visualize design patterns found in
the code. These approaches are complementary to the DRG
approach. Once a developer had found a Pattern through mining,
a DRG can help the developer understand how and why the
Pattern is implemented. These approaches may also be helpful in
extending the DRG to link to a system’s source.

PatternLint [15], developed by Sefika and colleagues, is intended
to help check if a Pattern is implemented correctly. The source
code of a system is analyzed for structural features, such as the
calls relationships between classes, and the structural
information is stored in a Prolog database. Facts are also
introduced into the database to describe structural features of
Patterns. A developer may then use a series of rules to check if
particular parts of the source conform to the Pattern descriptions.
The DRG approach could help developers use the PatternLint
system by giving them a deeper understanding of a Pattern prior
to the developer expressing the structural features of the Pattern
to check.

Several efforts have been undertaken to clarify the meaning and
presentation of Patterns using formal representations. For
instance, Lauder and Kent [12] present a three-model approach
that involves a role model, the most abstract and “pure”
representation of the Pattern, a type model, which refines the role
model, and the class model, which forms the concrete
implementation. LePUS [8] is a notation based on conventional
logic for representing Design Patterns. It enables reasoning about
both the structure and meaning of Design Patterns.

Mikkonen applied the DisCo [13] specification method based on
the temporal logic of actions as a means of helping to improve
the rigour of Pattern-oriented development. All of these
approaches can be used to help clarify potentially ambiguous
parts of a Pattern. They can also be used to help reason about
Pattern integration. DRGs are complementary to these
approaches in that they can help a developer understand an
existing Pattern sufficiently to formalize the Pattern. However, in
addition, DRGs can help a developer understand why parts of the
Pattern exist: the formalization techniques do not include this
why information.

Hypertext and Hypermedia approaches give the user the ability to
navigate through documents based on links therein. Often,
repeated words or phrases are linked, allowing the reader to
explore the text as desired. The SLEUTH [6] system, for
example, supports hypertext links from the documentation into
software artefacts. Links in SLEUTH are created and maintained
automatically based on a list of terms provided by the author. In
contrast, the DRG structures the information based on both user
provided information and the structure of the pattern text.

Adaptive annotation of links [3] involves the adaptive
augmentation of the hypertext links in documentation, to attach
information that gives hints about what will be found at the other
side. These links can be in the form of text or visual cues, using
icons to represent types of information. Although these
techniques offer navigation of software documentation, and some
degree of visualization of relationships between portions of the
text, they typically work at a page or paragraph level of
granularity. By contrast, the DRG provides noun and verb level
linkage. The finer granularity of decomposition, combined with
the graphical representation in a DRG can help to draw together
more context for elements in the pattern.

The DRG structure is similar to the structure used in Conceptual
Graphs [17]. CGs are visual systems of logic that are readable
by humans. Similar to DRGs, CGs represent concepts and the
relationships between concepts. Conceptual Graphs have been
used for many purposes, including the checking of consistency
between multiple views of a software specification [18].
Expressing Design Patterns as CGs could be beneficial as this
expression would enable formal analysis of the Pattern.
However, since Patterns are written in free-form text, the text
would have to be massaged heavily before such a representation
would be possible. Given our intent to use the DRG to visualize
the relationship between entities in the Pattern, rather than
analyze the Pattern, the extra effort required to mould the Pattern
text into a CG is not yet warranted.

7. SUMMARY
In this paper we have introduced Design Rationale Graphs
(DRG), a graphical representation of the text of Design Patterns.
DRGs help a reader explore concepts, entities, and sequences of
events described in the text of a Pattern. DRGs supplement the
solution information a reader may gain from diagram
information, such as UML [2] diagrams, present in the Pattern by
pulling together and relating disparate design concept
information. We have described tool support we built for DRGs,
and we have shown the basic utility of the representation through
a small exploratory study. The results of this study showed that
the use of DRGs helped readers of Design Patterns to better
understand the details and design context of parts of a Pattern’s
solution.

To further help developers make use of Design Patterns, we plan
to investigate the semi-automatic linking of DRGs to source.
Specifically, we plan to build upon existing Pattern mining
technology to link instances of Design Patterns in code to the
rationale represented in a corresponding DRG. This linkage is
one step towards helping a developer start to investigate the why
behind source code in an existing system.

ACKNOWLEDGEMENTS
This work was funded by NSERC, Siemens AG, and a University
of British Columbia Graduate Fellowship. We thank all of the
participants of our exploratory study for their time.

REFERENCES
[1] AT&T Inc., dotty: Graphviz, version 1.3, 1998. http://

www.research.att.com/sw/tools/graphviz.

[2] G. Booch, J Rumbaugh, I Jakobsen. The Unified Modelling
Language User Guide. Addison-Wesley, 1999.

[3] Brusilovsky, P., L. Pesin, and M. Zyryanov. 1993. Towards
an adaptive hypermedia component for an intelligent
learning environment. Human Computer Interaction: Lecture
Notes in Computer Science, 753:348—358

[4] F.Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M.
Stal: Pattern-Oriented Software Architecture - A System of
Patterns, John Wiley & Sons, 1996.

[5] M. A. Chaumun, H. Kabaili, R. K. Keller and F. Lustman.
A Change Impact Model for Changeability Assessment in
Object-Oriented Software Systems. In Proceedings of the
Third Euromicro Working Conference on Software
Maintenance and Reengineering, pages 130-138,
Amsterdam, The Netherlands, March 1999

[6] French, J.C.; Knight, hJ.C.; Powell, A.L., "Applying
hypertext structures to software documentation" Information
Processing & Management, vol.33, no.2, p. 219-31, March
1997

[7] Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995).
Design Patterns: Elements of Reusable Object-Oriented
Software. Reading, Mass.: Addison-Wesley.

[8] Peter Grogono and Amnon Eden, Concise and Formal
Descriptions of Architectures and Patterns, Submitted: The
Working IEEE/IFIP Conference on Software Architecture
(WICSA) August 28-31, 2001, Royal Netherlands Academy
of Arts and Sciences, Amsterdam, The Netherlands

[9] Keller, R. K., Knapen, G., Lagu, B., Robitaille, S.,
SaintDenis, G., and Schauer, R., The SPOOL design
repository: Architecture, schema, and mechanisms. In Hakan
Erdogmus and Oryal Tanir, editors, Advances in Software
Engineering. Topics in Evolution, Comprehension, and
Evaluation. Springer-Verlag, 2000

[10] D.B. Lange and Y. Nakamura. Interactive Visualization of
Design Patterns Can Help in Framework Understanding. In
Proceedings of the OOPSLA'95, ACM SIGPLAN Notices
vol. 30, no. 10, October 1995, pages 342-356

[11] LTCHUNK: The Language Technology Group,
http://www.ltg.ed.ac.uk/index.html.

[12] Lauder, A., Kent, S.: Precise Visual Specification of Design
Patterns. In: Proc. of ECOOP'98 European Conference on
Object-Oriented Programming, LNCS 1445, Springer
Verlag (1998)

[13] Mikkonen, T., Formalizing design patterns. Proc. 20th Int.
Conf. on Software Eng., IEEE Computer Society 1998, 115-
124

[14] D. Schmidt, M. Stal, H. Rohnert, F. Buschmann "Pattern-
Oriented Software Archetecture - Patterns for Concurrent
and Network Objects", John Wiley & Sons, 2000

[15] M. Sefika, A. Sane, and R. Campbell. Monitoring
compliance of a software system with its high-- level design
models. In Proceedings of ICSE-18, pages 387--396, 1996

[16] SNiFF+. User's Guide and Reference, TakeFive Software,
version 2.3. http://www.takefive.com, December 1996

[17] Sowa, John F. (1984) Conceptual Structures: Information
Processing in Mind and Machine, Addison-Wesley,
Reading, MA.

[18] T. Thanitsukkarn, A. Finklelstein. A Conceptual Graph
Approach to Support Multiple Perspective Development
Environment. Eleventh Workshop on Knowledge
Acquisition, Modeling and Management, September 1998.

Banff, Alberta, Canada.
http://ksi.cpsc/ucalgary.ca/KAW/KAW98/KAW98.proc.html

[19] Lutz Prechelt, Christian Krämer. Functionality versus
Practicality: Employing Existing Tools for Recovering
Structural Design Patterns. Journal of Universal Computer
Science (J.UCS), 4(12):866-882, December 1998

