
From the OO Design Principles to the Formal Understanding of the
OO Design Patterns

JAVIER GARZÁS

ALTRAN SDB Consultant
Projects Engineering Research Group

ALTRAN SDB
C/ Ramírez de Arellano, 15. 28043,

Madrid - SPAIN
jgarzas@altransdb.com

MARIO PIATTINI
Alarcos Research Group

Escuela Superior de Informática,
University of Castilla-La Mancha
Ronda de Calatrava, s/n. 13071,

Ciudad Real - SPAIN
mpiattini@inf-cr.uclm.es

1 Introduction

Up until a few years ago the Object Oriented (OO) knowledge was totally implicit but fortunately it is now being
specified and popularized in different forms: principles, heuristics, patterns and more recently, refactoring techniques.
The difference between these concepts is generally unclear and moreover not all of them have received the same
amount of attention or have reached the same degree of maturity. In fact, with the exception of the contributions of
Liskov, Meyer and R.C.Martin, a strong knowledge does not exist on design principles. Regarding OO design heuristics
the only works to which we can refer are those of Riel and Booch. Patterns, however, are the elements that have
undergone the greatest evolution and proof of this is the existence of numerous publications on the theme (Coad,
Gamma, Buschmann, Fowler and Rising , etc.). Lastly, refactoring techniques are characterized by their immaturity,
although it is true to say that this topic is rapidly gaining acceptance, largely thanks to Fowler’s work

The problem confronting the designer is how to articulate all this explicit knowledge and to apply it in an orderly and
efficient process in the OODA, in such a way that it is really of use to him. In fact, in practice, even such advanced
subjects like patterns have this problem, this situation could give rise to incorrect applications of the patterns.

In this paper we are going to make an in-depth analysis of the relationships between principles and patterns, as we
believe that principles can be useful when systematizing the application of patterns in OODA

2 Relationship Between Principles and Patterns

An OOD principle can be defined as a set of proposals or truths based on experience that form the foundation of OOD
and whose purpose is to control this process. Some principles are the next (other principles apart from those described
here may exist but we are limited by the length of this paper):

§ Open-Closed Principle (OCP): A module should be open for its extension and closed for its modification.
§ Substitution Principle (SP): The subclasses must be substitutable by their base classes.
§ Dependency Inversion Principle (DIP): Depend upon abstractions. Do not depend upon specifications.
§ Interface Segregation Principle (ISP): Many client specific interfaces are better than one general purpose

interface.
§ Default Abstraction Principle (DAP)
§ Interface Design Principle (IDP): “Program” an interface, not an implementation.
§ Black Box Principle (BBP): Favour the object composition over class inheritance.
§ Don’t Concrete Superclass Principle (DCSP): Avoid maintaining concrete superclasses.

In general, we can state that in order for an OO system to be of a certain quality this shouldn’t violate any principles. On
the other hand, patterns contribute to an efficient design but in general the exact relationship between principles and
patterns is unknown or more specifically we do not know which principles/s is/are ensuring each pattern.

So, for example, in order to conform to the DIP, one of the strategies could be to use the abstract Factory pattern. The
purpose of other patterns such as Prototype, Factory method, etc. is more to perform the Abstract Factory than to
directly conform to a principle. Therefore, we can conclude that there are patterns that directly allow a principle to be
complied with, whilst other patterns are more related to patterns than to principles. Consequently, patterns could be
classified according to the principles they follow. The principles would even enable us to create a different catalogue of
patterns to that currently existing (in most cases they are simply presented in alphabetical order). Checklists of
principles could also be drawn up which assess the design and offer us solutions patterns that ensure that they are
complied with. We can specify more and considering their relationship with the patterns, the principles can
contemplate one or several of the following types:

Type 1 , the pattern contributes a good
solution to the resulting model of the
application of the principle (“from the

principle toward the pattern”).

Type 2 , the pattern
completes or contains at

the principle.

Type 3 , the principle can improve a solution
to which has been applied a pattern

previously (“from the pattern toward the
principle”).

The next table shows an analysis of the principles mentioned in previous epigraphs and their relationship with each
pattern of the detailed by Gamma in function of the previous types. We can observe as the relationship of patterns has
been ordered alphabetically, we can obtain this way an objective order, later on, and based on the principles, we will be
been able to obtain analogies.

Several considerations, uses and
investigation lines can be extracted, some
examples are the following ones:

§ It allows to break down in forces of

smaller grain each one of the patterns,
facilitating the study of elements
common to all the patterns of oneself
character: “patterns in the patterns” or
“meta-patterns”.

§ It allows to guide the use of patterns,

since it is easier to know how to apply
in a correct way a principle that a
pattern and once applied the principle
is easy to arrive to the pattern. This
facilitates us the pattern's good use, in their fair measure, without abuse. For example, the use of NSCP implies us to
use creational patterns and this assures us that our system is written in function of interfaces and not in function of
implementations.

§ It allows a formal study of micro architectures.

§ It allows to obtain the forces (principles) that conform the pattern and how depending in its way of incidence in the

pattern (type 1, 2 or 3) this can be of different character, examples:

- We can observe as Abstract Factory, Builder, Factory Method and Prototype maintain an almost identical kernel of

principles while Singleton doesn't complete any principle. Singleton is not a micro architecture (it only describes a
class), Singleton treats the creation of objects but he doesn't make it with the same character and the same
abstraction that the other four creational patterns, an Idiom considers it. With regard to the four remaining creation
patterns, we observe that they complete the same principles except Builder, since this has the same character that
the previous ones but by means of a composition strategy. As we see the study of the principles that intervene in a
pattern allows us, among other many things, a finer and based classification.

- We observe as any micro architecture with some hierarchy that we want to consider design pattern should complete

(type 2), at least, the following principles: OCP, SP, DIP, IDP and DCSP.

- We observe that in patterns structurally identical as State and Strategy the same principles are completed and with

the same character.

- All pattern that completes OCP, SP, DIP, IDP and DCSP in type 2, ISP and DAP in type 3 and BBP don't

contemplate it is classified (according to Gamma’s book) as of behavior.

§ We will be able to look for and/or to validate new design patterns observing if they complete certain of meta-

patterns.

The principles allow us to extract good practical OO, observing how the patterns are based and how they are connected
with the design. Our final aim is to offer a detailed systematization of principles, heuristics, patterns and refactoring
techniques (together with their respective interrelationships) which will facilitate their application for the designer.

