Aspect-Oriented Indirection –

Beyond Object-Oriented Design Patterns

Martin E. Nordberg III

Blueprint Technologies, Inc.
7799 Leesburg Pike, Ste. 1000N
Falls Church, VA 22043
+1-703-624-4260

mnordberg@blueprinttech.com

1. OVERVIEW

Aspect-oriented software development has the potential to significantly reshape, if not make completely obsolete many common object-oriented design patterns.

In a paper submitted to another OOPSLA 2001 workshop [1] I make this point from the perspective of design quality as judged by abstractness, instability and direction of dependencies. In this paper I make some of the same arguments from a design patterns perspective. I show that the effectiveness of design patterns for anticipating future change generally comes at the price of extra overhead for object-oriented indirection through a key interface. I then show how replacing or augmenting object-oriented indirection with “aspect-oriented indirection” can lead to even better designs with both greater resiliency and lower overhead. I conclude with an example of a design pattern that succumbs to aspect-oriented improvement, namely the ubiquitous Factory pattern. The example includes a detailed Aspect/J implementation, thereby supplementing the more theoretical approach of [1].

2. DESIGN PATTERNS AS MODULE DECOUPLING MECHANISMS

At the heart of many design patterns is an indirection between service provider and service consumer (or service provider and augmented service provider). Design patterns are in some ways the object-oriented embodiment of the age-old computer science saying that adding a level of indirection can solve any problem. With objects the indirection is generally via an abstract interface, a “hinge point” in the terminology of Robert Martin [2].

Table 1 lists many common design patterns, the purpose of the indirection found in them, and the name of the key interface that gives each its characteristic behavior. Most design patterns are, in fact, named after their key interface, an observation that lends weight to the claim that indirection is at the heart of most patterns.

	Pattern
	Indirection
	Interface
	Ref.

	Observer
	Decouples event receivers from event senders
	Observer
	[3]

	Decorator
	Allows chained composition of multiple independent fragments of an overall algorithm
	Decorator
	[3]

	Adapter
	Reshapes an existing interface to meet different client needs
	
	[3]

	Extension Object
	Dynamically provides multiple interfaces or extensions to a base service
	Extension
	[4]

	Iterator
	Separates the traversal of a data structure from the data structure itself
	Iterator
	[3]

	Visitor
	Allows unanticipated or non-core functionality to be added to a base object hierarchy
	ElementA

ElementB

ElementX
	[3]

	Type Object
	Allows for dynamically typed object instances
	
	[5]

	Strategy/State
	Allows dynamic and potentially multivariate behavior
	Strategy
	[3]

	Memento
	Externalizes the prior state of an object (e.g. for undo) without exposing its details.
	
	[3]

	Abstract Factory
	Shields the client of an interface hierarchy from construction details and alternative families of implementations.
	Abstract Factory
	[3]

	Property Container
	Enables clients to read object attributes by name rather than via compiled interfaces.
	Property Container
	[6]

Table 1. Most design patterns incorporate a level of indirection for some specific design purpose.

In [1] I announce the fairly obvious obsolescence of the Visitor pattern in the face of aspect-oriented technology. The separation of concerns accomplished by the Visitor pattern comes at the cost of cyclic dependencies between Visitor and visited Element classes. As suggested in Table 1, the indirection of ElementX.AcceptVisitor introduces not a single hinge point, but one for every concrete class in the hierarchy. Therefore, the decoupling advantages of other patterns are sorely lacking in Visitor. Aspect-oriented languages eliminate the need for Visitor with their inherent support for open classes, introductions, or natural composition of textually separate modules into a logical whole.

The king of indirection in object-oriented design is the Observer pattern. An event receiver (observer) is decoupled from an event sender (Subject) by an abstract interface (Observer). This pattern sees use in many applications, particularly in large graphical user interfaces and in message-oriented middleware. Why would we want to improve on such a venerable design workhorse? Table 2 lists problems with the Observer pattern and their possible aspect-oriented solutions.

Sadly (for reference chasing programmers), object-oriented solutions to the problems of Table 2 would most likely add another level of indirection. For example, adding a local proxy Observer that receives ordinary events then publishes them over the network can solve the problem of distributed event sending. Unfortunately each level of indirection moves the software farther from the real world or analysis level view of the problem and deeper into relatively artificial mechanism classes that add overhead to both design comprehension and implementation debugging.

	Problem
	Solution

	The designer of an event source must decide ahead of time what events will be needed when and with what passed state.
	The “obliviousness” inherent in aspect-oriented languages [7] means that an event source designer need not even recognize it as such.

	The sender of an event must be designed with the appropriate choice of push or pull and level of detail for changed state information.
	Different event receivers can weave different levels of detail into the same event sender code.

	Notifications are difficult to accomplish in a single satisfactory thread-safe way.
	Clients with different threading models can define aspects with different thread awareness.

	Some clients may prefer bundling of events for performance or for non-flickering screen updates.
	The bundling of events need not be the responsibility of event source or sink but of a connective aspect between them. Bundling might itself be an aspect of the notification aspect.

	Distributed event notification requires much more sophisticated mechanisms for event propagation.
	Distributed events can be handled without an extra level of indirection to a proxy observer and without either source or sink depending on the mechanism classes. The dependency appears instead in a connective aspect that defines the distribution model on top of the event detail.

	Registration and corresponding unregistration can be difficult to get right.
	Registration and unregistration appear nearby in a single notification aspect with appropriate related point cuts or composition rules.

	A lack of documentation of which objects observe which others can make program comprehension difficult.
	An aspect can declare both the senders and the receivers of an event in a succinct fashion.

Table 2. Problems with the Observer pattern are surprisingly many but may have these aspect-oriented solutions.

The physical object-oriented indirection of the Observer pattern can be complemented or completely replaced by what I will call “logical indirection” in an aspect-oriented design. An object-oriented hinge point can be made more flexible or made completely obsolete by an aspect-oriented hinge point. This is illustrated in Figures 1 and 2.

[image: image1.wmf]Event Receiver

Event Sender

Subject

Observer

<<Interface>>

Optional Event Propagation

Mechanisms

Hinge Point

Figure 1. The Observer pattern is likely familiar because it sees such widespread use and sees use both at system architectural levels and humble implementation levels.

Figure 1 shows the typical Observer pattern optionally augmented by event propagation mechanisms. The observer interface is the object-oriented hinge point of the pattern, the flex point of the indirection. While this interface gives the overall design flexibility, the interface itself is significantly inflexible. For example, changing from a pull strategy to a push strategy for state change propagation would require a prohibitive level of rework in even a modest-sized system. Such a change (to the Observer interface itself) would be especially difficult to accomplish selectively or incrementally.

Figure 2 shows an aspect-oriented augmentation of the Observer pattern. At a minimum this design could add aspects of event propagation to the object-oriented design:

(1) State change propagation

(2) Thread safety

(3) Bundling of related or redundant events

(4) Distribution

(5) Delivery guarantees

(6) Causality

(7) Event tracing

(8) Debugging aids

[image: image2.wmf]Event Sender

Event Receiver

Connective Notification Aspect

<<Aspect>>

Optional Event Propagation

Mechanisms

Optional

Subject

Optional Observer

<<Interface>>

Aspect-Oriented

Hinge Point

Figure 2. Aspect-oriented alternatives to Observer could expand the object-oriented solution or could reduce its complexity by more direct wiring between event sender and event receiver. (Even without a physical indirection the notification remains logically indirect from the perspective of source code modularity).

In a more radical approach Observer and Subject may be completely removed or may be mapped to concrete classes by a connective aspect. This “aspect-oriented hinge point” increases the flexibility of the design. An object-oriented hinge point enables run-time indirection by serving as the connecting point for two classes with a mutual interest (event propagation). An object interface is the target of a shared dependency. An aspect-oriented hinge point flips the direction of the dependency, weaving itself into the same concrete classes, which now need not even be designed to support their mutual interest. For event handling the result is satisfying for all the reasons of Table 2. Connectivity maintenance is concentrated in the aspect. For other design patterns, aspect-oriented solutions may provide equal benefits for maintenance over time (or incremental development from small system to large).

3. DESIGN PATTERNS AS HEDGES AGAINST FUTURE CHANGE

We have seen that the key interface that defines the indirection in a typical design pattern is often a hinge point – a flexible place in the design where unanticipated changes can be made in the future with at most moderate effect on today’s code. Most design patterns are in fact hedges against future changes. This is one facet of quality designs; they do not fail under moderate revision. Table 3 explores this claim for the design patterns of Table 1.

	Pattern
	Flexibility for the Future

	Observer
	Unknown future clients can register for defined events.

	Decorator
	Additional links in the decorator chain may be added ad infinitum.

	Adapter
	Unanticipated client needs can be met by an intermediary.

	Extension Object
	New services can be composed into a core component at any future time.

	Iterator
	New data structures can be introduced with minimal effect on existing algorithms.

	Visitor
	Future, unintrusive new functionality is the whole point of the pattern.

	Type Object
	New “types” can be added as object instances rather than as compiled source code.

	State
	A state diagram can be modified with minimal effect on clients

	Strategy
	Completely new algorithms can be substituted or dynamically selected without rewriting client code.

	Memento
	Internal state implementation details can be changed with no effect on state undo clients.

	Abstract Factory
	A whole new family of products can be introduced with minimal effect on client code.

	Property Container
	New properties do not need new source code.

Table 3. Most design patterns attempt to anticipate the unknown – they prepare today’s code to support tomorrow’s.

Because aspect-oriented technologies reduce the need to anticipate change, aspect-oriented designs need not incorporate as much overhead as object-oriented designs. For example, in [1] I suggest that an aspect that defines a direct connection between event source and event sink may be more comprehensible and closer to the real world than the artificial indirection of the Observer pattern. A notification aspect retains the logical indirection of separate modularity. In similar fashion the patterns Decorator, Adapter, Strategy, and others may succumb to aspect-oriented replacement. For example, in the same way that Visitor is made obsolete by introductions, open classes, or composition rules, Decorator is made obsolete by advice or correspondence rules.

A key advantage of aspect-oriented programming is the separation of crosscutting concerns. However, some concerns may be separated simply by development time. This sort of separation of concerns is as well handled by aspect-oriented techniques as more static separation of concerns. Because this is true, aspects can either replace or improve design patterns in their preparedness for future change. The following example illustrates the latter case.

4. EXAMPLE: ASPECT-ORIENTED VIRTUAL CONSTRUCTION

This section describes a small example in which object-oriented indirection is combined with aspect-oriented indirection to improve upon a common design pattern or programming idiom, the use of a factory for polymorphic object construction.

The starting point is the simple Factory pattern shown in Figure 3. This common idiom for “virtual construction” includes a level of indirection between a client and a set of polymorphic services, one of which is to be constructed from any given string description of what kind of product is needed. This pattern works nicely for XML deserialization and other situations where objects are to be constructed in memory from their persistent representations. There are two related problems with this pattern:

(1) The Factory class depends upon every concrete Product type and is therefore subject to repeated maintenance.

(2) The selection of what kind of product to construct is inappropriately separated from the products themselves.

[image: image3.wmf]IProduct

<<Interface>>

Factory

ProductA

Client

Figure 3. Factories are a common idiom for “virtual construction” of polymorphic objects.

[image: image4.wmf]IProduct

<<Interface>>

Factory

Product Manufacturing

<<Aspect>>

ProductA

Virtual Construction

<<Aspect>>

Client

Object-oriented

hinge point

Aspect-oriented

hinge-point

Figure 4. An Aspect-Oriented Factory moves the product selection code into the product modules and therefore comes closer to the goal of “virtual” construction.

An Aspect-Oriented Factory solves these problems and comes closer to the goal of virtual construction: products that polymorphically assemble themselves from given assembly instructions. Figure 4 shows the aspect-oriented design and Figure 5 includes the full code of an Aspect/J[8] implementation. This solution retains all the elements of the purely object-oriented solution but adds two aspects related to product manufacturing. The object-oriented hinge point, IProduct, continues to provide value not only for polymorphic construction but polymorphic behavior after construction. The Factory class still appears but no longer knows how to make anything (see Factory.makeProduct() in Figure 5). Instead, a VirtualConstruction aspect located inside each product class performs product selection and weaves itself into Factory with the help of a point cut defined in aspect ProductManufacturing.

Here are the practical benefits of aspect-oriented virtual construction:

(1) When a new product is added, only a single file need be added and edited – the code for the product itself.

(2) A product may be temporarily or permanently removed without commenting or deleting a block of Factory code.

(3) The constants that determine product kind need not be exposed outside each concrete product.

(4) There is no big switch statement in the Factory.

These benefits derive from the ability of aspect code to compose itself into a base functionality without any modification of that base functionality. (In this case the base functionality has no capability in itself.) In terms of the factory metaphor this design approaches the ultimate in flexible manufacturing – an empty factory floor that can be reconfigured at will.

The fourth benefit above, switch statement elimination, is often a benefit ascribed to object polymorphism. The VirtualConstruction aspect eliminates the switch statement left over in the object-oriented solution. In a sense, the aspects of this design cancel out the negative effects of the indirection by moving construction code into the various product modules and reversing the dependencies from factory to product.

The aspect idiom of Figure 5 incorporates the common theme of aspect-oriented indirection. Namely the point cut (where the aspect applies) is defined separately from what behavior is to be incorporated at that point cut. In this case the “where” is defined first in one place and the “what” is defined separately in multiple places. This is an interesting twist on the usual case of an abstract library aspect that defines the “what” in one place and requires concrete aspects to define the “where”, usually in multiple places.

5. CONCLUSION

There is much to be discovered in how aspect-oriented designs will replace or improve object-oriented designs, but it seems clear that many honoured design patterns are in for some shaking up in coming years.

Aspects have the potential to replace the object-oriented indirection that is characteristic of design patterns with more maintainable solutions where the indirection is only the logical indirection of aspect weaving. When object-oriented hinge points are left in (as with our Factory example), aspects correct the troublesome loss of modularity characteristic of the indirection.

interface IProduct

{

 void beUseful();

 void becomeObsolete();

}

class Factory

{

 public IProduct makeProduct(String whatKind)

 {

 return null; // aspects required!
 }

}

aspect ProductManufacturing

{

 static pointcut production(String whatKind):

 target(Factory) &&

 args(whatKind) &&

 call(IProduct makeProduct(String));

}

class ProductA

 implements IProduct

{

 // product “self-assembly” occurs here

 private static aspect VirtualConstruction

 {

 IProduct around(String whatKind):

 ProductManufacturing.production(whatKind)

 {

 if (whatKind.equals("A"))

 {

 return new ProductA();

 }

 else

 {

 return proceed(whatKind);

 }

 }

 }

 ProductA()

 {

 System.out.println("new ProductA");

 }

 public void beUseful()

 {

 System.out.println("ProductA.beUseful");

 }

 public void becomeObsolete()

 {

 System.out.println("ProductA.becomeObsolete");

 }

}

// Similar code for ProductB ...

class FactoryTest

{

 public static void main(String args[])

 {

 Factory factory = new Factory();

 IProduct productA = factory.makeProduct("A");

 productA.beUseful();

 productA.becomeObsolete();

 }

}

Figure 5. An Aspect-Oriented Factory, implemented in Aspect/J, moves the product selection code inside the concrete product code, eliminating many of the troubles with maintaining factory code in its object-oriented form.

It appears that aspects have the potential to take the success of design patterns to new heights of design quality. They improve design comprehensibility today and better prepare for changes tomorrow.

6. OPEN QUESTIONS

Topics for discussion during the workshop include these:

· Is it better to seek incremental aspect-oriented improvements to existing object-oriented design patterns, or should aspect-oriented design start from scratch for the same or similar intent?

· Can the “lost sense of self” that comes from indirection be regained with aspects or is aspect-oriented indirection just as problematic?

· Is the separation of point cut from advice as fundamental as separation of interface from implementation?

· How should object-oriented designers decide whether they have hedged too much against future changes?

· How should aspect-oriented designers decide when the proportion of aspects to objects is too high and it is time to go back to some object-oriented fundamentals?

· Will aspect-oriented design patterns be primarily all new or primarily improvements to object-oriented design patterns?

Either way the future is bright!

7. REFERENCES

1. Nordberg, M.E. Aspect-Oriented Dependency Inversion, OOPSLA 2001 Workshop on Advanced Separation of Concerns.

2. Martin, R.C. Design Principles and Design Patterns, http://www.objectmentor.com, 2000.

3. Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Patterns – Elements of Reusable Object-Oriented Software, 1995.

4. Gamma, E. Extension Object. In R. Martin, D. Riehle, F. Buschmann (eds.). Pattern Languages of Program Design 3. Addison-Wesley Longman, Inc., 1998, 79-88.

5. Johnson, R. and Woolf, B. Type Object, In R. Martin, D. Riehle, F. Buschmann (eds.). Pattern Languages of Program Design 3. Addison-Wesley Longman, Inc., 1998, 47-65.

6. J. Carey, B. Carlson, and T. Graser SanFrancisco Design Patterns, Addison-Wesley, 2000.

7. Filman, R.E. and Friedman, D.P. Aspect-Oriented Programming is Quantification and Obliviousness, ECOOP 2000 Workshop on Aspects and Dimensions of Concern.

8. Xerox PARC, Aspect/J Primer, http://www.aspectj.org, 2001.

PAGE

