Beyond Design: Patterns (mis)used

Patterns as problem indicators

Christa Schwanninger

Siemens AG

Otto-Hahn-Ring 6

81739 Munich

christa.schwanninger@mchp.siemens.de

Pattern authors put a lot of effort in writing patterns. The understanding in what makes a good written representation of a pattern evolved over the years. We got more and more aware that a good description of the proposed solution is necessary, but useless for the reader if the problem and the forces that drive the relationship between problem and solution are not covered properly. A good pattern shows the reader when the solution is applicable when it is not, and where the variation points are to tailor the solution to the concrete problem to be solved. The place in a pattern where the really hard solution seeking process is reflected is the forces section. It is the hardest to write, but if done well, the most rewarding to read.

The second lesson we learned is that patterns in isolation are nice, but not powerful enough to improve software or process quality significantly. The reasons for this are obvious: first of all it is hard to find the one pattern that is useful to solve ones problem among a heap of unrelated pieces of literature; second, applying design patterns to ones architecture solves one problem, but the architectural transformation caused by it generates one or several other problems. A first step towards helping readers to find patterns for their problems were pattern catalogues, containing patterns belonging to one domain or problem space. But the best way to help the developers are pattern languages, that connect a group of domain specific or problem space specific patterns in a reasonable way by specifying the context of each pattern in the pattern language. Context is the information on how each pattern is embedded in the whole language. Some of the pattern pioneers saw this early, like Coplien in 1996: “A pattern language is a collection of patterns that build on each other to generate a system. A pattern in isolation solves an isolated design problem; a pattern language builds a system. It is through pattern languages that patterns achieve their fullest power.” [Coplien96] Nowadays this is common knowledge in the whole pattern community and everywhere groups of authors strive to refactor the existing pattern literature to build pattern languages.

Can we learn more than design expertise from patterns and pattern languages?

Looking at patterns and pattern languages as being also thorough descriptions and discussions of problems and forces on the one hand and attempts to cover a whole problem complex in depth on the other, two ways of “misusing” them come to my mind:

1. Patterns can be used to analyse the typical problems of a domain and investigate if new programming languages, new programming paradigms, tools or processes could help to solve them specific for this domain.

2. Patterns and pattern languages can help to learn and reason about a domain before the concrete problems arise.

This approach is nothing new of course, since developers realizing that the same problems arise again and again usually drive improvements. A rather simplistic example for this is memory management in C++: idioms and patterns about reference counting for C++ were a first step to help developers avoiding memory leaks, but the problem was really solved using built-in garbage collection in programming languages that evolved from C++, like Java and C#, making the idioms and patterns obsolete without forcing the developers to learn a completely new programming language.

Could a more systematic analysis of patterns lead to more systematic improvements?

The AOP community states that a number of lower-level design patterns are necessary because non-functional requirements cut through source code and design patterns help to implement them keeping the code flexible and maintainable. But the same can sometimes be achieved more elegantly with techniques for advanced separation of concerns. Can carefully designed new programming paradigms free developers from fighting with cross cutting concerns and thus replace some design patterns?

Roman Pichler concludes in an analysis of the EJB component model in connection with security integration that despite the model is a remarkable improvement for the development of enterprise-scale applications, it has a number of shortcomings. Sun recommends using several patterns to build a large EJB-based application, which should solve the problems not solved in the model itself. Pichler proposes to go through these patterns and find solutions to the problems that are integrated in the EJB component model [Pichler01].

Some of these efforts could make a number of patterns obsolete in certain areas, which doesn’t mean that patterns as a concept ever will be replaced by languages, tools or processes, but that the developers will get additional support and thus have more time to solve the problems that aren’t that well understood, and to find good solutions that grow to be new patterns.

References:

[Coplien96] James O. Coplien , SIGS Management Briefings “Software Patterns”, SIGS Books & Multimedia, 1996

[Pichler01] Roman Pichler “Engineering for Trusted Systems”, Siemens internal report, 2001
