Making patterns transparent to you

Hernán A. Wilkinson

Banco Galicia

Argentina

hernan.wilkinson@bancogalicia.com.ar
Máximo A. Prieto

LIFIA, Universidad Nacional de la Plata

Argentina

maximo@lifia.info.unlp.edu.ar
Abstract

One of the problems when using patterns is that you have to code them every time you want to use them. Also, when using patterns there is no support from your programming environment to help you recognize and maintain them.

We propose here to extend the Smalltalk’s metaclass model to help developers with the task of using patterns.

Problem statement

Currently, almost all programming languages based on classes keep information about only one kind of relationship among them: Inheritance. If you need to model higher level relationships, you have to code them. This is fine, we don’t want programming languages to be dificult to use, but there may be things that could be convinient to have support from the language.

One of those are patterns. Right now, when using patterns you have to code them every time you want to use them. For example, if you want your class to be a Singleton [GOF], you have to write the methods new, and initializeUniqueInstance
 (See Appendix A – Common Singleton implementation).

Depending on the the language you use, those methods will be essentially the same no matter the class. Thus, if you use a “weak typed” language like Smalltak, there will not be any differences between those methods, no matter the singleton class, but if you use “strong typed” languages, like Java, there will be implementation differences.

There have been attempts in Smalltalk to model the concept of Singleton in a class [GOF2]. For example, you could have a class named Singleton, which defines a “class instance variable” and implements the new and initializeUniqueInstance methods. So, if you want a class to be a singleton you just subclass the Singleton abstract class. But this is not a good design decision since you will get stuck with the single inheritance relationship.

We propose that programmers should not have to code a pattern every time they want to use it. The “language” (or programming environment) should give support to that and should be easily extensible to add new patterns, to maintain the patterns that you are currently using and to obtain information about how they are implemented.

For example, the Composite pattern has a class that acts as “Component”, another that is call “Composite” and a lot of “Leafs”. Also, there is a direct relationship between the Composite and the Component, that is, instances of Composite are going “to know” many objects of type Component.

That relationship has to be coded every time the programmers uses a Composite pattern, but because of that fact, there may be differences between each implementation, making hard to realize from the source code that a Composite pattern is being used. The information about what patterns are being used is in the “source code”, but it is hard to do a “reverse engineering” from that code and recognize the patterns.

Also, there are more things than just relationships when using patterns, there is also behavior. Going back to the Composite pattern, the key behavior for the Composite is to forward the messages it receives to the Components. Again, why should the common behavior for every Composite be coded every time?

We think it is possible to automate pattern implementation in such a way that:

· The programmer should not have to code every pattern he/she uses

· The metaclass model could give support to automate pattern generation

· The metaclass model could keep and give information about how and what patterns are being used.

· Design decisions should be “documented” with the metaclass’s support.. Currently, most of the decisions are being directly coded

Another advantage of having the metaclass model giving support for patterns is the possibility to get information about them, being this fact maybe more important from the design point of view than just automate the code generation of a pattern.

Imaging if you could ask a class: Are you a Singleton? or What patterns do you implement?, even more, I want to know all the classes that are Composite, etc. This could really help when doing “reverse engineering”, when trying to understand or document some code.

If we could extend the metaclass model to support patterns, the programming environment could react based on decisions we make. For example:

· If a class is a Singleton, and you overwrite the new method, the computer should tell you: “This class is a Singleton, modifing this method could prevent it to act like one. Are you sure you want to do it anyway ?”

· If you are using the Composite pattern and add a new method to the Component class, the computer could ask you: “Do you want this message to be implemented in the Composite class fowarding it to its Components?”

· If you are using a template method and a subclass override that method, the computer should warn you: “This method implements the pattern Template Method. If you overwrite it you will break the contract. Are you sure you want to continue?”

We definitely think that having metaclass support for patterns would help development and we are trying to show that it is possible to have that kind of support. The idea is to give more design info to the “programming environment”, it should help us with more things that just keeping the inheritance relationship.

What we need from here:

· We need to finish the design and development of the framework that will support these ideas and requirements.

· We are looking for the simplest way to implement this. We don’t want it to be difficult or “heavy” to use.

· Some changes to the current Behavior hierarchy will be needed (we think they will be more related to behavior rather than structure)

· We may need to modify the current tools (like the Browser) or create new ones.

· What’s the relationship with Refactoring? Could we do better refactoring with this kind of meta support?

· What’s the level of transparency this should have? For example, when using the Composite pattern, should the user be able to see and modify the ‘composed’ methods?

Appendix A – Some sample code

Object subclass: #ASingletonClass

instanceVariableNames: ''

classVariableNames: ''

poolDictionaries: ''

category: 'Kernel-Objects'

implements: #(Singleton)

Object subclass: #VisualPart

instanceVariableNames: ''

classVariableNames: ''

poolDictionaries: ''

category: 'Kernel-Objects'

implements: #((Composite componentOf: #VisualPart))

VisualPart subclass: #CompositePart

instanceVariableNames: ''

classVariableNames: ''

poolDictionaries: ''

category: 'Kernel-Objects'

implements: #((Composite compositeOf: #VisualPart))

VisualPart subclass: #ASingletonVisualPart

instanceVariableNames: ''

classVariableNames: ''

poolDictionaries: ''

category: 'Kernel-Objects'

implements: #(Singleton (Composite leafOf: #VisualPart))

ASingletonClass doesImplement: Singleton (true

ASingletonClass implementationList (#(Singleton)

VisualPart doesImplement: Singleton (false

VisualPart doesImplement: (Composite componentOf: #VisualPart) (true

VisualPart doesImplement: (Composite compositeOf: #VisualPart) (false

CompositePart doesImplement: (Composite compositeOf: #VisualPart) (true

ASingletonVisualPart doesImplement: Singleton (true

ASingletonVisualPart doesImplement: (Composite leafOf: #VisualPart) (true

Singleton allClasses (#(ASingletonClass ASingletonVisualPart)

Composite allClasses (#({VisualPart, (VisualPart CompositePart ASingletonCompositePart) })
Appendix A – Common Singleton implementation

Object subclass: #ASingletonClass

instanceVariableNames: ''

classVariableNames: 'uniqueInstance'

poolDictionaries: ''

category: 'Kernel-Objects'

ASingletonClass class>>new

uniqueInstance isNil ifTrue: [self initializeUniqueInstance.].

^uniqueInstance

ASingletonClass class>>initializeUniqueInstance

uniqueInstance := self basicNew.

References

[GOF] E. Gamma, J. Vlissides, Jonhson, Helm, Design Patterns, Elements of Reusable Object-Oriented Software, Addison-Wesley, 1995

[GOF2]
S. Alpert, K. Brown, B Woolf, The Design Patterns Smalltalk Companion, Addison-Wesley, 1998

� Our work is being develop with Smalltalk. That’s why we are talking about the messages new and initializeUniqueInstance.

